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Abstract
The Liang Bua hominins from Flores, Indonesia, have been the subject of intense scrutiny

and debate since their initial description and classification in 2004. These remains have

been assigned to a new species, Homo floresiensis, with the partial skeleton LB1 as the

type specimen. The Liang Bua hominins are notable for their short stature, small endocra-

nial volume, and many features that appear phylogenetically primitive relative to modern

humans, despite their late Pleistocene age. Recently, some workers suggested that the

remains represent members of a small-bodied island population of modern Austro-Melane-

sian humans, with LB1 exhibiting clinical signs of Down syndrome. Many classic Down syn-

drome signs are soft tissue features that could not be assessed in skeletal remains.

Moreover, a definitive diagnosis of Down syndrome can only be made by genetic analysis

as the phenotypes associated with Down syndrome are variable. Most features that contrib-

ute to the Down syndrome phenotype are not restricted to Down syndrome but are seen in

other chromosomal disorders and in the general population. Nevertheless, we re-evaluated

the presence of those phenotypic features used to support this classification by comparing

LB1 to samples of modern humans diagnosed with Down syndrome and euploid modern

humans using comparative morphometric analyses. We present new data regarding neuro-

cranial, brain, and symphyseal shape in Down syndrome, additional estimates of stature for

LB1, and analyses of inter- and intralimb proportions. The presence of cranial sinuses is

addressed using CT images of LB1. We found minimal congruence between the LB1 phe-

notype and clinical descriptions of Down syndrome. We present important differences

between the phenotypes of LB1 and individuals with Down syndrome, and quantitative data

that characterize LB1 as an outlier compared with Down syndrome and non-Down
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syndrome groups. Homo floresiensis remains a phenotypically unique, valid species with its

roots in Plio-Pleistocene Homo taxa.

Introduction
Interpretation of the Late Pleistocene Flores hominins has been controversial since their initial
description in 2004 as a distinct species,Homo floresiensis [1]. The many phylogenetically prim-
itive features observed in the Flores specimens relative to modern humans suggest that their
ancestry is rooted in Plio-PleistoceneHomo, perhapsH. erectus orH. habilis. Since its discovery,
workers have confirmed that cranial and endocranial shape and many cranial characteristics of
LB1 correspond to classicH. erectus characters [2–5], while some postcranial and mandibular
features, such as the interlimb proportions and symphyseal shape are more primitive thanH.
erectus, and more closely resemble earlyHomo or even australopiths [6–8]. Cladistic analyses
placed the origin ofH. floresiensis earlier than the origin ofH. erectus [9, 10], but both aH. erec-
tus or an earlyHomo origin would imply evolutionary convergences in morphology [11, 12].

At the same time, a minority of workers maintains that the Flores hominins are small-bod-
ied modern humans, and, at least in the case of the most complete specimen, LB1, patholog-
ically altered. Several clinical signs (e.g., microcephaly) and specific pathologies (endemic
hypothyroidism, Laron syndrome) have been proposed [13–18] and subsequently rejected
[19–24]. Most recently, Henneberg, Eckhardt [25] reported that LB1 manifested many clinical
signs of Down syndrome (DS). We provide an overview of the DS phenotype, and re-evaluate
the evidence presented by Henneberg, Eckhardt [25] in support of this diagnosis for LB1.

The stratigraphic layers containing H. floresiensis were initially dated to 95–74 to 12 kyr [1,
26]. This chronology was recently revised to 100 to 60 kyr based on a better understanding of
the cave geology and more extensive dating of the H. floresiensis fossils themselves, as well as
sediment and speleothems of these layers and overlying tephra [27]. The dates are internally
consistent. Dates associated with tools thought to be manufactured by this species may extend
the range from 190 to 50 kyr [27, 28]. Modern human remains are not documented in the
broader region of Southeast Asia and Australia until 50–45 kyr [29–31]. Thus, to the extent
that this new chronology accurately reflects the true dates of occupation of the region, there
was no temporal overlap between H. floresiensis and H. sapiens on Flores.

The Liang Bua remains consist, in part, of a fairly complete skeleton with a cranium and
mandible, assigned to LB1. LB1 is the holotype for the species Homo floresiensis and presents
the only cranium thus far recovered [1] (Fig 1). The LB6 individual presents additional evi-
dence in the form of a mandible and numerous postcranial bones [1, 26, 32, 33]. The mandibu-
lar anatomy of LB1 and LB6 are quite comparable [8] (Fig 1), and the postcranial elements of
BL6 and other individuals from the site further confirm that this population was small-bodied.

Down syndrome and paleopathology
Down syndrome, described in 1866 by John Langdon Down [34], is caused by trisomy of some
or all of chromosome 21 (and is also known as Trisomy 21) through non-disjunction or, more
rarely, translocation, and is seen in 1/600-1/2000 live births [35]. More than 100 clinical signs
are reported to be associated with DS, many of which are used in fetal diagnosis. Although the
combination of many clinical features are characteristic of DS, a valid diagnosis requires karyo-
type, an option that is not available in the case of the subfossils from Flores. Many of the clini-
cal signs of DS are soft tissue characteristics which cannot be assessed in fossils, such as a single
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palmar crease, up-slanting palpebral fissures, and a protruding tongue. DS is a highly heteroge-
neous condition and although skeletal features are noted (brachycephaly, maxillary retrusion),
there is no single, diagnostic skeletal phenotype present in all individuals with DS that distin-
guishes these individuals from the rest of the population. Finally, many of the clinical signs of
DS are not unique to this syndrome but are present in other syndromes (e.g., midfacial hypo-
plasia, microcephaly) or, in some cases, are part of the normal range of variation in euploid
(having a balanced set of chromosomes) individuals (e.g., flat foot, occlusal abnormalities,
Brushfield spots, cardiac septation defects) (see also [36]). Chen [37] advises that�8 character-
istic clinical findings of DS should be present for a clinical DS diagnosis, but that chromosomal
analysis is preferred and necessary in uncertain cases. Therefore, a large number of DS signs
must be positively identified if a definite diagnosis of DS is to be accepted. Major reference
works on paleopathology in osteological remains provide limited assistance as they either do
not address DS explicitly [38, 39] or do not indicate which skeletal features in isolation or com-
bination are sufficient for a differential diagnosis [40].

Fig 1. Photographs of LB1 cranium and LB1 and LB6mandibles. (A) The cranium is shown in right lateral
and anterior views. (B) The LB1 (left) and LB6 (right) mandibles are shown in left lateral and occlusal views.

doi:10.1371/journal.pone.0155731.g001
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This type of analysis is not, however, without precedent. A 7200-year-old skeleton from the
site of Santa Rosa Island, CA was notable in its metopism, flat cranial base, wide interorbital
distance, reduced facial height, dental anomalies and small postcranial elements (estimated
stature of 154 cm). The authors noted that these features were consistent with four syndromes
including DS, and concluded that “This case illustrates. . .some of the difficulties of diagnosing
craniofacial syndromes in prehistoric skeletal remains” ([41], p. 179). Rivollat et al. [42] identi-
fied a child from the French medieval site of Saint-Jean-des-Vignes as having DS on the basis
of craniofacial and dental characteristics. Rivollat et al. [42] identified differences in the Saint-
Jean-des-Vignes skull relative to a non-pathological reference sample and then assessed the dif-
ferences with descriptions and measurements of DS available from the clinical literature. A sin-
gle individual from Tauberbischofsheim, Germany was diagnosed with DS by Czarnetzki et al.
[43] out of the>7000 examined in the time period 3200 BC-AD 800 in Europe. They used five
2D landmarks from the median facial profile, but did not provide images or methodological
details, including evidence that this facial profile was distinct from other disorders with midfa-
cial hypoplasia (i.e., Achondroplasia or Crouzon syndrome). The most thorough archaeolog-
ical diagnosis of DS was published by Brothwell [44], who identified a probable case of DS in a
Saxon child based on comparisons of craniodental traits with other member of its population
and comparative DS material. Such traits as microcephaly, hyperbrachycephaly, thin cranial
bones, small maxilla but not mandible and dental irregularities were most concordant with DS.
Although the author considers the upright basi-occipital to be indicative of DS, this feature,
along with a low spheno-ethmoidal angle, may suggest a highly flexed cranial base, which is
actually at odds with the typical DS phenotype. Brothwell ([44], p. 49) emphasizes that “It is
important in this type of analysis to consider all the features together, rather than attempt to
isolate one special characteristic feature.”

The present study differs from these studies in that it does not seek to make a clinical diag-
nosis but rather to refute an existing diagnosis. Nevertheless, a similar comparative approach,
evaluating morphological features of LB1 against both the DS and euploid phenotypes with an
emphasis on those features that most clearly differentiate these two groups and are found at a
high frequency in DS, is used here. Many, but not all, of these traits were also discussed by Hen-
neberg, Eckhardt [25]. Yet, this is an imperfect approach as we have previously described and
quantified the many ways in which LB1 does not fit within the modern human range of varia-
tion but is rather aligned more closely with archaic Homo. One problem this poses is that LB1
may not fit within either the modern euploid or DS range of variation and instead be an outlier.
Conversely, it is possible that LB1 could converge on features in DS for reasons that are not
related to a chromosomal abnormality. For example, LB1 converges in some aspects of cranial
shape with humans exhibiting extreme microcephaly due to its probably ancestry from a
small-brained earlyHomo species [21]. These issues must be born in mind while interpreting
the results of the comparative analyses presented below.

Down syndrome and LB1
The presence of some characteristic features of DS in LB1 is insufficient to confirm a diagnosis
of DS, and, conversely, the absence of some signs is insufficient to reject a DS diagnosis. Rather,
we must be satisfied to judge the likelihood of DS based on assessment of those DS signs that
are evaluable in the hard tissues preserved for LB1. The absence of all or most of these signs
would indicate a lowered probability of DS. A summary of features seen more commonly in
individuals with DS than in the general population that are potentially discernable in skeletal
or dental remains are summarized in Table 1. Only those dental features specifically mentioned
by Henneberg et al [25] are included in Table 1, but additional dental traits are listed in S1
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Table 1. Features Associated with Down syndrome that may be evaluable in hard tissues and/or were discussed by Henneberg et al. (2014).

Features Our Notes Status in LB1 as per
Henneberg et al. (2014)

Status in LB1 as per
current study

Brain

Brain smaller than matched
population / sex averages

Yes LB1 is outside of the DS
range

Small cerebellum Yes All endocast dimensions
are small

Growth and Development

Height and weight 2–4 SD below
general population postnatally

Yes (short stature) LB1 is outside of the DS
range

Delayed osseous maturation

Craniodental

Increased levels of fluctuating
asymmetry of face / dentition

Must be measured at the population level Yes (directional
asymmetry of facial

skeleton)

Cannot be assessed at
individual level (S1 Text)

Microcephaly Yes

Persistent metopic suture 67% of males; 42% of females [35]

Flat occiput 76% of children and adults [35]

Brachycephaly 75% of Danish males 19–25 years [49] Yes LB1 is outside of the DS
range

Absent frontal sinus 83–86% of children and adults [50, 51] Yes Probable

Poorly pneumatized sphenoid sinus ~66% of children and adults [51, 52] Yes Sinus present, size
uncertain

Hypoplastic maxillary sinus 7% of Saudi mixed-sex sample 12–24 years [50]; 45% of
children 4–15 years [53]

No

Midfacial hypoplasia Yes (underdeveloped
maxilla)

No

Flat nasal bridge 61% of children and adults [35] Cannot be evaluated

Narrow palate 67% of children and adults [35] No

Occlusal problems (e.g., mandibular
overjet, anterior open bite)

No

Irregular alignment of teeth 71% of children and adults [35] Yes

Periodontal disease >90% [35] Yes Yes

Missing teeth (including M3 /
excluding M3)

92% / 56% [54] Yes Yes

Taurodontism 55–86% [55–57] Yes No (where it can be
evaluated; S1 Text and

S1 Table)

Thin cranial bones 59% of Saudi mixed-sex sample 12–24 years [50] No

Microgenia Yes Cannot be evaluated (S1
Text)

Flat cranial base angle (platybasia) 140.3 in DS; 129.9 in controls (<18 years); 144.0° in DS;
135.6° in controls (15–18 years) [58, 59]

No (<130°)

Plagiocephaly Not usually listed as an adult DS feature Yes Yes, but irrelevant to DS
diagnosis

Postcranial

Flexible flatfoot due to ligamentous
laxity

60% of children 4–10 years [60]; 70% of adults [61] Yes Cannot be evaluated (S1
Text)

Atlantoaxial instability due to
ligamentous laxity

10–20% [35] Yes Cannot be evaluated but
unlikely (S1 Text)

Short femur Common prenatal marker for DS; not usually listed as an
adult DS feature

X (relative to foot and arm) LB1 is outside of the DS
range

Dorsolumbar kyphosis 11% of children and adults [35]

(Continued)
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Table. In many cases these signs were identified and evaluated at the fetal, newborn or juvenile
stage, and it is not clear that they remain valid markers of the adult DS phenotype. For exam-
ple, brachymesophalangia-5 is more common in young individuals with DS and there is some
evidence that this condition may become normalized during subsequent growth and develop-
ment [45, 46]. Similarly, the flaring ilia of the pelvis are also more diagnostic at fetal and infant
stages than in adults with DS [47, 48].

The identification of LB1 as exhibiting a DS phenotype was previously rebutted by West-
away, Durband [70] with regard to the mandibular evidence. Additional preliminary critiques
were offered by Argue [71] and Baab et al. [72]. Here we provide comparative analyses of linear
and volumetric measurements of the endocast, neurocranial and symphyseal shape, stature,
intralimb proportions and digit length among samples of individuals with a documented diag-
nosis of DS, samples of euploid individuals, and LB1. We also provide new images derived
from CT data that shed light on the presence of cranial sinuses and re-evaluate the evidence
regarding the foot:femur (foot:thigh) ratio in LB1 and individuals with DS. Some additional
features discussed by Henneberg, Eckhardt [25] were re-evaluated using the extensive DS liter-
ature and results are presented in the accompanying Supplemental Information. This re-evalu-
ation reveals the improbability of a diagnosis of DS based on a synthesis of the clinical
literature on DS with comparative analyses of new morphometric evidence from LB1.

Results

Brain, Skull and Dentition
Brain size. Henneberg et al. ([25], p. 1 of SI) stated that “the brain of LB1 is very small, its

vault is low, its shape is brachycephalic, and its cerebellar region is small. All of these attribu-
tes. . .are common attributes of individuals with Down syndrome. . .” The endocranial volume
(EV) and linear dimensions of the virtual endocast of LB1 were significantly smaller than our
sample of 6 female DS patients (Table 2) and the EV was also significantly smaller than a larger
mixed-sex sample of 30 adults (19 males, 11 females) reported by Aylward, Habbak [73]

Table 1. (Continued)

Features Our Notes Status in LB1 as per
Henneberg et al. (2014)

Status in LB1 as per
current study

Short broad hands 70% of children and adults [35]

Brachydactyly 67% of children and adults [35] Yes Some distal phalanges
short in LB1 & LB6

Clinodactyly 59% of children and adults [35]

Brachymesophalangia (shortening of
middle phalanx of fifth finger)

59% of children and adults [35]

Arthritis, including juvenile
rheumatoid arthritis-like arthropathy

<1% [62, 63] Yes No pathology in carpal
bones [64, 65]

Metatarsus primus varus 40% of children 4–14 years [60] No (S1 Text)

Hallux valgus 26% of children 4–14 y [60] Cannot be evaluated (S1
Text)

Gap between hallux and second toe 50% of children and adults [35] Cannot be evaluated (S1
Text)

Flaring iliac wings 38% of adults [48] Yes

Other

Hypothyroidism 1.5–6.1% of children [66]; 19 cases of hypothyroidism in a
15 year longitudinal study of 112 adults with DS [67]; 0.7–
23.5% of newborns had congenital hypothyroidism [68, 69]

Yes No [19, 21]

doi:10.1371/journal.pone.0155731.t001
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(Fig 2). The mean cranial volume for our six DS subjects was 1174.17 cm3 (SD = 132.35; range:
918–1276), which was not significantly different [t (34) = -1.154, p = 0.256)] from the mean
EV of 30 adult DS subjects of 1261.26 cm3 (SD = 174.18 cm3) reported by Aylward, Habbak
[73], indicating that our smaller sample is representative of DS.

Using the data from Aylward, Habbak [73], the average EV of the DS sample was 87% of
the average EV from a matched euploid sample. Applying this relationship to the average EV
of 1270 cm3 for the local Indonesian population of Rampasasa [17], we estimated an average
EV of 1106 cm3 for individuals with DS from Rampasasa. This value was>2.5 times the size of
the LB1 EV (417–426 cm3; [4, 74] (Fig 2). Analyses of head circumference yield comparable
results (S1 Text).

Cerebellar hypoplasia is another known clinical sequela of DS [73, 75]. In this case the cere-
bellar volume is reduced disproportionately relative to other regions of the brain, although
some of this is attributable to a loss of cerebellar volume during life [76], which cannot be eval-
uated on an endocast. Henneberg et al. [25] included “small cerebellum” as a sign of DS present
in LB1 based on the work of Vannucci et al. [77]. However, Vannucci et al. [77] evaluated only
linear, not volumetric, dimensions. Although LB1 does have a low cerebellar breadth: cerebral
breadth ratio, in common with DS individuals, the cerebellum is wide relative to (the cube root
of) EV, in common with the euploid but not DS pattern (based on data from Table 2). The
smaller cerebellar breadth of LB1 documented here (Table 2) and elsewhere is therefore insuffi-
cient to argue for the cerebellar hypoplasia seen in some DS individuals. Moreover, the shape
of the LB1 endocast differed from DS and euploid samples (S1 Fig).

Neurocranial shape. Henneberg, Eckhardt [25] focused on the brachycephalic index and
low cranial profile of LB1 as support for a DS classification. Brachycephaly in individuals with
DS appears to be due to a proportionally greater reduction in antero-posterior growth of the

Table 2. Descriptive statistics and comparisons of the values for the LB1 endocast with values for our sample of 6 subjects with Down syndrome.

Parameter Number Mean Std Dev Std Err Mean Lower 95% Upper 95% P value*

Endocast length (fp-op, mm)

Down syndrome 6 154.75 6.8 2.78 147.61 161.89 0.002

LB1 1 118.4 . . . .

Cerebellar width (mm)

Down syndrome 6 100.63 3.54 1.44 96.92 104.34 <.001

LB1 1 76.4 . . . .

Cerebral width (mm)

Down syndrome 6 124.95 5.76 2.3 118.91 131 0.009

LB1 1 103.4 . . . .

Frontal breadth

Down syndrome 6 102.28 5.06 2.07 96.97 107.6 0.005

LB1 1 80.1 . . .

Endocranial volume (cm3)

Down syndrome 6 1174.17 132.35 54.03 1035.28 1313.06 0.002

LB1 1 417 . . . . .

Note.―fp-op = frontal pole-occipital pole.

*For each measurement, P is the probability of obtaining a result at least as extreme as that observed if the null hypothesis were true that the value for

LB1 is not lower than the mean value for our 6 subjects with DS. After statistical levels of significance were corrected by adjusting for the false discovery

rate, the adjusted levels to achieve statistical significance ranged from 0.01 for cerebellar width (mm) to 0.05 for cerebral width (mm), with all P values in

Table 2 being below these levels and remaining statistically significant.

doi:10.1371/journal.pone.0155731.t002
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vault relative to medio-lateral growth [49, 78]. Lestrel and Roche [78] found that this dispropor-
tionate reduction led to a relatively higher vault in DS than euploid individuals, which contrasts
with the low vault of LB1. We confirm this using quantitative analysis of 3D landmarks captur-
ing cranial vault shape which indicates that the low neurocranial profile of LB1 was distinct
from both euploid and DS modern humans on PCs 1 and 4, who themselves overlapped to a
large extent (Fig 3). The landmarks that loaded most strongly on PC 1 included many of the
midline landmarks (e.g., lambda, bregma and inion), but also frontotemporale (due to greater
postorbital constriction in LB1), and landmarks such as asterion and anterior pterion that reflect
the differences in relative breadths of the vault (LB1 is relatively wider inferiorly and narrower
anteriorly). Neurocranial size (as captured by centroid size) accounts for only a small proportion
of variation in PC 1 scores (R2 = 0.05; p<0.05). Excluding LB1 from the regression actually
strengthens the relationship slightly (R2 = 0.10; p<0.05) because LB1 scored much higher than
predicted by its size based on the scaling relationship within the human sample. The relation-
ship between size and PC 4 scores was not statistically significant. The DS centroid was distinct
from the euploid centroid on some higher components, but the two samples always evinced sub-
stantial overlap in their ranges, consistent with the relatively minor shape differences discussed
by Kisling [49] and Seward et al. [79] for these groups. In this context, the observation that LB1
and most DS individuals (as well as some euploid individuals) evince brachycephaly is eclipsed
by the overall incongruent cranial architecture of LB1 and all humans.

Flat cranial base: Numerous workers have documented the open cranial base angle (platyba-
sia) of DS individuals compared with euploid controls [49, 58, 59, 80, 81]. Alio et al. [58] showed

Fig 2. Box plot of endocranial volumes. The DS and matched euploid clinical samples are from Aylward,
Habbak [73]. The center line represents the average value while the box captures ± 2 SDs. The mean value
for the Rampasasa population is from Henneberg, Eckhardt [25]. The average value of an individual with DS
from the Rampasasa population (“Rampasasa DS”) was estimated as 87% of the euploid value, based on the
relationship between the matched DS and euploid samples in Aylward, Habbak [73].

doi:10.1371/journal.pone.0155731.g002
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that postpubescent individuals with DS had an average value of 144.0° (4.83) compared with
135.6° (4.31) in controls, similar to what Suri et al [59] demonstrated in children, both using the
standard orthodontic measurement for cranial base angle (CBA) of basion-sella-nasion. A value
of 130° was reported for LB1 using the anthropological measure of CBA (basion-sella-foramen
cecum) [1]. Given the more superior position of foramen cecum relative to nasion, the equiva-
lent basion-sella-nasion angle would actually be even lower, placing LB1 ~3 SD below the aver-
age DS value reported in [58]. LB1 does not therefore have a flat cranial base.

Facial anatomy. A small midface and maxilla are among the most characteristic features
of the DS craniofacial phenotype (e.g., [82]) (Table 1). This configuration results in midfacial
hypoplasia and malocclusion including mandibular overjet and anterior open bite, which are
also affected by the protruded and proinclined lower incisors often seen in DS patients [49, 83,
84]. Henneberg et al. ([25], p. 4 of SI) did not list a disproportionately small midface and max-
illa as skeletal manifestations of DS in LB1, but did describe the maxilla of LB1 as “underdevel-
oped” which they claimed contributes to “the reduced midfacial skeleton situated superior to a
disproportionately underdeveloped mandible.” According to Spitzer et al. ([51], p. 569), “The
diminutive maxilla remains retracted under the protruding forehead. . .” in DS. Although we
were unable to quantify this morphology directly as most of our imaging datasets for DS
patients were de-identified by removing the face and there was midline damage to the LB1
face, it is nevertheless visually apparent that this description is the reverse of the condition seen
in LB1 where the forehead is posteriorly sloping and the mid- and lower face are protruding
(Fig 4). Moreover, the wear pattern on the lower incisors of LB1 that indicates edge-to-edge
occlusion of the incisors [8] is likewise inconsistent with mandibular overjet, anterior open
bite, or an “underdeveloped mandible.” The images in Fig 4 further suggest that the LB1

Fig 3. Principal components 1 and 2 of a PCA of neurocranial shape based on 3D landmarks (see
Materials and Methods) in euploid and DS samples of humans and LB1. The LB1 neurocranial shape is
distinct from the two modern human samples, which themselves evince considerable overlap in shape. The
solid blue squares are the adults with DS, the blue outlined squares are juvenile / subadults with DS, gray
diamonds are euploid adults and the red asterisk is LB1. Surface renderings are single examples from each
group and are for illustrative purposes only. The first two components accounted for 14.6% and 9.6% of the
total variance, respectively (PC 1 eigenvalue = 0.0006; PC 2 eigenvalue = 0.0004).

doi:10.1371/journal.pone.0155731.g003
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mandible is not underdeveloped but rather disproportionately large relative to cranial length
by comparison to the DS and euploid human groups (e.g., ramus breadth).

Henneberg et al. [25] pointed to a high level of asymmetry in the craniofacial skeleton of
LB1 as consistent with higher levels of fluctuating asymmetry recorded for soft tissue facial fea-
tures in a sample of DS individuals as further support for a DS diagnosis. These two types of
asymmetry represent varying descriptions of identifiable patterns asymmetry variation dis-
cussed more fully in S1 Text.

Symphyseal anatomy. Henneberg, Eckhardt [25] listed “Microgenia (Micrognathia)” as a
clinical sign of DS seen in LB1 and LB6, citing Brown and Maeda [8]. Micrognathia refers to
the underdevelopment of the mandible and is rarely listed as a feature of DS, although it is
found in other chromosomal disorders (e.g., trisomy 13). Microgenia refers to a small, receding
or “weak” chin where the soft tissue landmark pogonion does not project as far anteriorly as
the vermillion border of the lower lip. Microgenia cannot therefore be evaluated in LB1 in the
absence of soft tissue anatomy.

However, other aspects of symphyseal anatomy can be assessed. The overall anatomical
configuration presented by LB1 and LB6, consisting of a smooth and receding anterior sym-
physis (no boney hallmarks of a chin), and superior and inferior transverse tori separated by a
deep/broad genioglossal fossa posteriorly, aligned them with archaic hominins, including aus-
tralopiths, rather than modern humans (Fig 5) [1, 8]. This was further borne out by a PCA of
symphyseal cross-sectional shape (quantified by elliptic Fourier analysis) demonstrating that
LB1 and LB6 did not overlap the DS or euploid samples and are most similar to one another
and to Australopithecus afarensis (Fig 6). The major shape differences between the DS (and
euploid sample) and LB1 / LB6 (and australopiths) include the thicker (antero-posteriorly
expanded) symphysis with a smooth, bulging anterior contour and a double projection on the
posterior border corresponding to the superior and inferior transverse tori in the latter.

Fig 4. “Cranial templates” for euploid and DS samples of males between the ages of 19 and 29 years and pseudo-
lateral cephalogram tracing of LB1. The euploid and DS cephalograms were based on average roentgencephalometric
dimensions (modified from Kisling [49]). All three images have been scaled to approximately the same cranial length.
Midfacial hypoplasia in the DS facial phenotype is apparent and contrasts strongly with the relatively long and prognathic
maxilla and mandible of LB1. Other differences include the thicker cranial bones, shape of the mandible and the low
neurocranial profile of LB1. Note that the LB1 cranium suffered damage to midline structures of the face, including the
glabella, nasal bones and subnasal region; morphology of anterior maxilla was estimated based on surrounding
morphology and indication of edge-to-edge occlusion of incisors by PB.

doi:10.1371/journal.pone.0155731.g004

LB1 Did Not Have Down syndrome

PLOSONE | DOI:10.1371/journal.pone.0155731 June 8, 2016 10 / 32



Cranial sinuses. Another common clinical finding in DS is small or absent cranial sinuses
[49, 51, 85–87]. In particular, frontal sinuses are usually congenitally absent (83–93%; [50, 51,
86]) or more rarely hypoplastic (3.4%; [50]). Maxillary sinuses are sometimes poorly developed
(6.9–40%; [50, 53]). Sphenoid, mastoid and ethmoid sinuses have been described as poorly
developed or poorly pneumatized [51, 88]. Specifically, Spitzer et al. [51] found the sphenoid
sinus to be restricted to the anterior sphenoid bone in ~66.6% of DS cases they examined,
while Miller et al. [52] found that 20% and 40% of DS patients aged 16–60 had non-pneuma-
tized or partially pneumatized sphenoid sinuses, respectively.

A frontal air sinus previously identified in the right supraorbital torus based on clinical CT
data [19, 20], was reinterpreted as a defect or alteration in the diploë based on micro-CT data
[89]. Frontal sinus development is difficult to assess in the area around glabella due to excava-
tor damage, but Balzeau and Charlier [89] did not observe pneumatization in the surrounding
region and viewed this as evidence for absence of the frontal sinus.

Henneberg, Eckhardt [25] expressed doubt regarding the presence of a sphenoid sinus in
LB1 and asserted that there was little space for the development of a maxillary sinus in the ver-
tically short and “sunken midfacial (infraorbital) regions” (p. 4 of SI). We provide here addi-
tional images from medical CT scans that show the left and right maxillary sinuses in LB1 (Fig
7). Although they are filled with matrix, this is of a different density than the surrounding bone
[19]. The anatomy of the sphenoid body is more difficult to interpret definitively using the
medical CT images alone. However, a higher resolution dataset based on a micro-CT scan of
the cranium (see [3]) suggests the presence of a matrix-filled sinus (Fig 7) which is more visible
on the right side in this particular image, but can also be identified on the left side. Aplasia of
the sphenoid sinus is therefore deemed unlikely. The sinus may be restricted to the anterior

Fig 5. Comparison of symphyseal anatomy, shape and dimensions in a euploid modern human, LB1
and LB6. Note presence of chin (mental protuberance or trigone), inverted T, incurvature and absence of
internal buttressing in modern human. LB1 and LB6 are similar anatomically and distinct from H. sapiens. No
mental protuberance, incurvature, inverted-T, or tubercles. LB1 and LB6 have inferior and superior
transverse tori, with deep genioglossal pit.

doi:10.1371/journal.pone.0155731.g005
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part of the sphenoid body, but it is difficult to identify its borders with sufficient confidence to
either support or refute the possibility of sphenoid sinus hypoplasia. Mastoid air cells are well-
developed in LB1 (see Fig 3 in [20]).

Cranial vault thickness. Another possible skeletal sign of DS is thin cranial bones ([51,
85], but see [90]). LB1’s cranial bones are not thin by the standards of modern humans (see Fig
7 here, and Fig 3 in [20]). Absolute values for cranial vault thickness in LB1 are similar to or
above the averages for a global sample of euploid humans and similar to or lower than average
values for H. erectus [1, 3, 19, 89]. A similar pattern applied when only Holocene aboriginal
Australians were considered[19]. Although some locations on the frontal bone are thicker in
LB1 than in euploid humans, this may be artificially increased in LB1 by the hyperostosis fron-
talis interna documented by Balzeau and Charlier [89].

Cranial bone thickness may scale with body mass and endocranial volume in hominins [91,
92]. Lestrel and Roche [93] demonstrated that cranial bone of adults with DS was thinner than
euploid adults terms of both absolute and relative thickness (standardized by area). The cranial
bones of LB1 are likely thick relative to size compared to euploid humans given their overlap in
absolute values and the small EV of LB1, but this has not been evaluated quantitatively. The
absolute values for cranial vault thickness in LB1 cannot be characterized as thin compared to

Fig 6. Principal components 1 and 2 of a PCA of symphyseal shape based on Fourier shape variables. Shape differences (anterior
facing left) associated with the PCs are illustrated below (PC 1) and to the left (PC 2) of the ordination. The samples include regionally
appropriate modern humans, individuals with DS, PleistoceneHomo, Australopithecus and one Paranthropus boisei fossil, as well as LB1
and LB6. LB1 and LB6 are quite similar in their symphyseal shape and most closely resemble A. afarensis. The DS sample overlaps the
euploid modern humans and some PleistoceneHomo samples. The first two components accounted for 73.1% and 9.6% of the total
variance, respectively (PC 1 eigenvalue = 0.01; PC 2 eigenvalue = 0.001).

doi:10.1371/journal.pone.0155731.g006
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Fig 7. Matrix-filled maxillary and sphenoid sinuses in LB1. Arrows indicate the right (A) and left (B)
maxillary sinuses as seen in parasagittal sections of the LB1 skull using medical CT imaging. The probable
sphenoid sinus is illustrated in parasagittal (C), transverse (D) and coronal (E) sections based on higher
resolution micro-CT scans of the cranium. The positions of the three sections are shown on the surface
renderings in the top row. Micro-CT images (C-E) were provided courtesy of Yousuke Kaifu.

doi:10.1371/journal.pone.0155731.g007
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euploid humans, including regional samples (contra [94]), and are likely to be relatively thick
when the small EV of LB1 is taken into account (see also [89]).

Dentition. The dental clinical literature describes a number of traits that are more com-
mon in DS patients than unaffected sections of the population. These include, relatively small
teeth, hypodontia, oligodontia, tooth transposition, agenesis, occlusal abnormalities, and a rela-
tively small dental arch (S1 Table). While none of these traits are pathognomonic signs for DS,
a combination of these traits might form the basis for a more convincing differential diagnosis
than provided by [25]. Henneberg et al. [25] mention irregular position of teeth and missing
teeth in LB1 as consistent with DS but do not provide additional details.

LB1 and LB6 do not have relatively small teeth or palates. For example the medio-lateral and
bucco-lingual dimensions of the mandibular molars of LB1 and LB6 are quite similar to those of
a large sample of modern humans, and the LB1 molars are actually slightly larger than those of
LB6 [8]. Edge-to-edge anterior tooth wear in LB1 and LB6 is not consistent with open bite or
mandibular overjet, and there are not any transposed teeth [8, 95]. The maxillary P2s are bilater-
ally rotated 90° in LB1 [95]. Unilaterally, these are the most commonly rotated teeth in modern
humans [96], but there are no known syndromic associations [97]. Additional discussion can be
found in S1 Text and illustration of the non-taurodont M1 of LB6 is found in S2 Fig.

Hypodontia (missing up to 5 teeth, excluding M3’s) and oligodontia (missing>5 teeth,
excluding M3’s), with teeth failing to develop, are widely reported features of DS [54]. Most fre-
quently absent teeth in DS are third molars (74%), lateral incisors (I2 >26%; I2 >20%) and 2nd

premolars (P4 >18%; P4 >25%) [98–106], which are the same teeth most often missing in the
general population [107]. Two teeth, the right P4 and right M

3, were not present before death
in LB1, with no evidence of their dental alveoli [95]. Whether the right P4 was congenitally
absent, or lost during life is uncertain. There is a space between the neighboring P3 and M1

where the P4 would have been, and interproximal facets on the distal P3 and mesial M1. How-
ever, these observations are also consistent with a retained deciduous molar (see also [108]).
However, if the P4 failed to develop, then the dm1 should have been retained, or mesial migra-
tion reduced the space between P3 and M1 more than it has [109, 110], unless this occurred
soon before death. There is no evidence of the P4 being lost due to caries as speculated by
[111]. Remaining sections of posterior alveolus, and mandibular incisor wear, indicate that
LB1 had a complete set of maxillary incisors. The incisors were lost as part of the excavation
damage to the face and left frontal region in 2003 [8, 95]. Tooth wear, with no distal facet on
the right M2, indicates agenesis of the M3. LB6 presents the full complement of mandibular
teeth.

Stature and Postcranial Skeleton
Stature. LB1’s extremely short stature was an outlier even with respect to the reduced stat-

ures of people with DS. Rounded to the nearest cm, our range of statures estimated for LB1
from the femur and femur+tibia was bracketed between 1.00–1.09 m (Table 3), values which
were comparable to the original estimates of 1.04–1.09 m based on the femur only [1]. Our
tibia+femur estimates were encompassed within the larger range of estimates from the femur
only. Classic calibration works best when extrapolation is required to predict stature, as is the
case here [112]. For this reason, we suggest that while 1.00–1.09 m represents a reasonable stat-
ure range for LB1, we prefer the lower values from classic calibration (1.00–1.04 m) because
extreme extrapolation is required even for the pygmy training sample. Application of the
Konigsberg et al. [112] classic regression for the femur from a large sample of normal sized
modern humans yields an estimate of 1.08 m for LB1, a value consistent with our new results
from pygmies. Henneberg, Eckhardt [25] presented a range of stature estimates for LB1 based

LB1 Did Not Have Down syndrome

PLOSONE | DOI:10.1371/journal.pone.0155731 June 8, 2016 14 / 32



on several reference populations and both upper and lower limb elements. Use of the upper
limb elements is ill-advised in view of LB1’s interlimb proportions being outside the range of
modern humans of any stature [6]. Restricting the Henneberg, Eckhardt [25] estimates to
those based on Australian and Asian reference samples, and utilizing only the femur or the
tibia+femur, the range was 1.06–1.20 m (for females / mixed sex) and 1.33 m (for males).

LB1 stature estimates based on Javanese females (see [25] for sample details), a mixed-sex
sample of Aboriginal Australians (see [25] for sample details), and small-bodied African popu-
lations (see [113] for sample details) were all well below the 3rd percentile of stature for both
Turkish (n = 1726; [114]) and estimated Javanese DS groups (see Methods for details) (Fig 8).
Only the estimates for LB1 stature based on US military males of Asian descent (not the most
appropriate reference population) provided by Henneberg, Eckhardt [25] were within the
ranges of Javanese DS heights. LB8 would be an even more extreme outlier as the stature esti-
mates from its femur+tibia ranged from 0.96 m (classic) to 1.02 m (inverse). A stature of ~1 m
is achieved in Turkish females with DS at roughly 6 years of age.

Foot:femur ratio. Henneberg, Eckhardt [25] argued that the short femur relative to foot
length was a feature that linked LB1 to DS. They cited anthropometric data from Smith and
Ulrich [115] that included mean lengths for the foot and thigh in DS (n = 12) and matched
euploid samples (n = 12) in support of a higher femur:foot length ratio for individuals with DS.
The DS ratio (0.61 unadjusted; 0.56 adjusted for comparability to skeletal ratios; see Methods
for details) was on average slightly higher than the euploid values (0.58 unadjusted; 0.53
adjusted). They concluded that since the skeletal ratio of foot:femur for LB1 of 0.68 was closer
to the DS value, this aligned LB1 with the DS sample. However, the slightly higher values for
the DS versus euploid groups in no way approach the extremely high value of LB1 (Fig 9). The
DS mean is within one standard deviation of the corresponding euploid value, and the DS
range is entirely within the euploid range. On the other hand, the observation that LB1’s ratio
is closer to the DS than the euploid average is of no importance given how extreme the LB1
value is relative to the euploid and DS values. This is confirmed by a t-test indicating that the
LB1 value was significant higher than the DS average (t-value: 1.81, p:<0.001). Comparable
data regarding the femur:humerus (thigh:upper arm) ratio are discussed in S1 Text and illus-
trated (S3 Fig).

Digit length. The hands of DS individuals are frequently characterized as broad and short
(e.g., [35, 116]), but this description is unaccompanied by any metric quantification. The fifth
finger in particular is short due to brachymesophalangia (short middle phalanx) [117], but this

Table 3. Stature estimates forHomo floresiensis using an African pygmy reference sample (N = 19).

Femur

Inverse calibration (OLS)1 Classic calibration2

LB1 (280 mm) 108.6 100

Femur+Tibia

Inverse calibration (OLS)3 Classic calibration4

LB1 (515 mm) 108.8 104.2

LB85 (~473 mm) 101.5 95.8

1 Stature (cm) = [0.331 x femur length (mm)] + 15.876; r = 0.89, s.e.e. = 3.7
2 Stature = (femur length– 41.706)/2.3837
3 Stature = [0.173 x (femur length + tibia length)] + 19.694; r = 0.93, s.e.e. = 2.9
4 Stature = (femur length + tibia length + 6.6663)/5.0055
5 Femur length for LB8 is estimated from its tibia length (216 mm) and the crural index of LB1 (83.9)

doi:10.1371/journal.pone.0155731.t003

LB1 Did Not Have Down syndrome

PLOSONE | DOI:10.1371/journal.pone.0155731 June 8, 2016 15 / 32



may be more relevant for young individuals than adults [45, 46]. Henneberg, Eckhardt [25]
cite small dimensions for the Liang Bua manual and pedal phalanges, particularly the distal
phalanges, relative to female European averages. As we are unaware of short toes (i.e., pedal
phalanges) being part of the DS phenotype, only the manual phalanges were assessed. The
absolute lengths of the proximal and intermediate manual phalanges of LB1, LB6 and LB10
(see Material and Methods for reassignment of LB10 first proximal phalanx from the foot to
the hand) fell within the range of normal- and small-statured samples (Table 4). One of LB1’s
distal phalanges was within the range of the human samples, but its pollical distal phalanx and
the distal phalanges of LB6 were smaller than in our samples. However, the stature estimates

Fig 8. Observed stature for 18-year-old males (gray) and females (black) with DS from Turkey, comparable
estimates for Javanese with DS, and estimates for LB1 based on different reference populations. The Turkish
data are from Tüysüz et al. (2012). Estimates for Javanese with DS are based on the relationship between euploid
and DS Turkish populations and average stature for adult male and female (euploid) Javanese (see text for details).
The three lines indicate the 97th, 50th and 3rd percentiles. The first three stature estimates for LB1 are from
Henneberg et al. (2014) while the range on the left were generated for this study.

doi:10.1371/journal.pone.0155731.g008
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for the Liang Bua individuals indicate that they are smaller than most modern humans, and
therefore relative measures are more appropriate. Relative to humeral length, the pollical distal
phalanx of LB1 was just below the range for the small-bodied groups (Table 4), but within the
range for the normal-statured sample (S2 Table). Only ten individuals from the small-bodied
sample preserved the first distal phalanx, so the true population range may in fact encompass
this value. Overall, only the distal phalanges are small and even then they overlap or approach
the modern human range when scaled by humeral length.

Additional postcranial features discussed by Henneberg et al. [25], including craniocervical
instability / hypermobility and flexible flat foot seen frequently in DS individuals are attribut-
able to ligamentous laxity [118, 119] and are therefore difficult to assess in osteological
remains. The abnormal boney anatomy of the atlanto-occipital joint in LB1 described by Kaifu,
Baba [3] was interpreted by these same authors as indicative of limitedmobility rather than

Fig 9. Plot of the foot:femur (or foot:thigh) ratio in recent humans of normal stature and short stature,
LB1, and a DS and amatched euploid control sample. The box-and-whisker plots include the mean and
±1 SD as well as the range. The asterisks for the LB1 value are the 95% confidence intervals based on the
regression equation used to obtain the estimate [7]. The fleshy foot:thigh bars labeled “anthropometric” are
the values based on the data from the DS and euploid control samples from Smith and Ulrich [115], while the
bars labeled “adjusted” represent the raw values adjusted to make themmore comparable to the skeletal
ratios (see text for details).

doi:10.1371/journal.pone.0155731.g009
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hypermobility, and the “flat foot” described previously in LB1 reflects a primitive bony foot
architecture, not flexible flat foot [7] (see S1 Text for more details).

Plagiocephaly and hypothyroidism were also listed as clinical signs in LB1 that sometimes
occur in DS [25]. Kaifu, Baba [120] argued persuasively for the presence of positional (defor-
mational) plagiocephaly in LB1 based on the particular pattern of asymmetry in the cranium
and the pattern of occlusion. Although having DS is a risk factor for positional plagiocephaly,
its presence in LB1 is not particularly strong evidence of DS given that<1% of individuals with

Table 4. Absolute and relative length of manual phalanges in the Liang Bua hominins and a comparative sample of small-bodied modern humans.

Manual Phalangeal Length

Modern Humans Liang Bua values

Digit Average SD Range

Proximal Indeterminate digit—LB1:>33.4; LB6: 31.2

I 27.3 1.9 23.6–30.7 Digit I—LB10: 24.2

II 36.4 2.1 32.4–39.5

III 41.0 2.6 37.0–45.2

IV 37.9 2.0 34.2–41.9

V 29.9 2.1 25.7–34.3

Intermediate Indeterminate digit—LB1: 25.6; LB6: 16.9

II 21.0 1.7 19.3–23.8

III 25.4 2.1 21.6–29.8

IV 24.6 1.9 22.1–28.6

V 18.0 1.9 15.4–21.7

Distal Indeterminate digit—LB1: 13.4; LB6: (?)10.5–12.9

I 21.0 2.0 18.4–24.3 Digit I—LB1: 15.2

II 15.3 0.7 14.2–16.1

III 16.4 1.5 14.9–19.5

IV 16.5 1.9 14.7–19.8

V 15.9 2.3 13.4–19.5

Manual Phalangeal Length as % of Humeral Length (LB1 only)

Modern Humans Liang Bua values

Digit Average SD Range

Proximal Indeterminate digit—>13.7%

I 9.9% 0.5% 8.8–10.8%

II 13.1% 0.6% 11.7–14.2%

III 14.8% 0.8% 13.4–16.1%

IV 13.8% 0.5% 12.9–14.6%

V 10.8% 60.0% 9.6–11.8%

Intermediate Indeterminate digit—10.5%

II 7.7% 0.4% 7.0–8.2%

III 9.2% 0.5% 8.6–10.3%

IV 8.9% 0.4% 8.4–9.7%

V 6.4% 0.5% 5.8–7.5%

Distal Indeterminate digit—5.5%

I 7.6% 0.5% 6.9–8.6% Digit I—6.3%

II 5.6% 0.3% 5.3–6.1%

III 5.9% 0.4% 5.4–6.6%

IV 6.0% 0.6% 5.3–6.7%

V 5.7% 0.7% 4.9–6.7%

doi:10.1371/journal.pone.0155731.t004
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positional plagiocephaly had DS in a large study of risk factors for positional plagiocephaly
[121]. Reported frequencies of congenital hypothyroidism vary from 0.7–23.5% of newborns
with DS [68, 69], but are considerably lower in children and adults (Table 1). It has been sug-
gested that LB1 and other Liang Bua hominins had congenital (myxoedematous endemic)
hypothyroidism (“cretinism”) resulting from a lack of dietary iodine [13–15]. While pheno-
typic features of congenital hypothyroidism resulting from lack of iodine or other causes (e.g.,
genetic) are likely to be similar, there is also considerable evidence indicating that the Liang
Bua hominins did not have hypothyroidism [19, 21] and this cannot be considered strong evi-
dence of a DS diagnosis for LB1.

Discussion
Although a concrete diagnosis of DS can only be accomplished through genetic testing, we crit-
ically evaluated whether the skeletal anatomy of LB1 is compatible with the DS phenotype as
proposed by Henneberg et al. [25]. We generated novel data sets related to endocranial volume,
neurocranial and symphyseal shape in DS, as well as new stature estimations for LB1. We were
unable to verify more than marginal overlap between the LB1 and DS phenotypes. In several
instances, Henneberg et al. [25] described morphologies in LB1 that superficially resembled
features seen in DS, but actually reflected different underlying phenotypes, including “atlanto-
occipital abnormality” and flat feet. In fact, neither of these features were directly evaluable in
LB1 as they relate to soft tissue structures, as is also the case for microgenia. In other cases,
qualitative similarity was not borne out by quantitative analyses, such as small brain, short stat-
ure, brachycephaly, and short femora. In the case of facial asymmetry, Henneberg et al. [25]
conflated previous measures of fluctuating asymmetry of the face (soft tissues) in a sample of
people with DS with asymmetry of the LB1 facial skeleton (discussed in S1 Text). There were a
small number of cases where the results were more ambiguous and require careful consider-
ation, such as short manual digits, aplastic / hypoplastic cranial sinuses and tooth agenesis.

The clinical literature suggests that some or many DS individuals are characterized by a
slightly smaller than average brain size (and accompanying head circumference). The cranium
is often described as brachycephalic with a flat cranial base, a hypoplastic midface and dispro-
portionately small maxilla. The mandible is usually of normal size but individuals with DS may
present with microgenia. DS individuals are further characterized by reduced stature and
higher foot:femur or fleshy foot:thigh ratios than euploid control groups.

In contrast, the greatly reduced brain size (EV = ~417 cm3) and head circumference of LB1
mark this individual as an outlier relative to those DS individuals evaluated here whose values
are much closer to control samples of euploid individuals. Similarly, the low and poorly filled
out cranial vault of LB1 contrasts sharply with samples of both DS and euploid modern humans
who are themselves quite similar, and is more similar toH. erectus [21]. The cranial base of LB1
is not flat, and its cranial base angle overlaps the euploid but not the DS range of values. The
anteriorly projecting face and posteriorly sloping frontal squama of LB1 do not match descrip-
tions of DS individuals but are common in archaicHomo. The posteriorly sloping anterior sym-
physis of the mandible lacks the elements of a bony chin present in euploid and DS samples,
and exhibits both superior and inferior tori on its posterior surface, features that align it more
clearly with early hominins than with either DS or euploid humans. The short stature (just over
1 m) and disproportionately short lower limbs reveal further evidence of a primitive body shape
that does not overlap ranges of variation for either DS or euploid samples. These examples con-
firm that the LB1 phenotype (and that of other Liang Bua fossils assigned toH. floresiensis) is
better interpreted as a distinct species whose affinities lie with earlyHomo species than as a
member ofH. sapiens with DS or any other pathology proposed thus far.
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LB1’s cranial morphology can be compared to descriptions and images of crania previously
diagnosed with DS in the archaeological record from England (a Saxon burial) [44] and France
[42]. Both Brothwell [44] and Rivollat et al. [42] cited brachycephaly, a flat posterior vault /
occiput, thin cranial bones, reduced facial height and dental anomalies in support of their DS
diagnoses. This brachycephaly is not accompanied by a dramatic decrease in cranial height nor
by a posterior sloping of the forehead [44], both features that distinguish LB1 from the Saxon
and French juvenile crania. Moreover, the strongly flexed occipital bone with a transverse torus
and thick cranial bones in LB1 contrast with these DS diagnoses (S1 Table) [1, 8]. That said, we
do not expect that all individuals with DS would present identical morphologies given that DS
is highly heterogenous [36]. Indeed, the Saxon and French juveniles differ from one another in
features such as cranial base flexion and microcephaly and some features in each more closely
resemble the euploid than the DS condition. However, in both cases there are numerous cra-
niodental characteristics that frequently differentiate DS from euploid individuals, which is not
the case for LB1.

In the case of short manual digits, we found that the distal phalanges of the Liang Bua homi-
nins were short by modern human standards but in most cases those of LB1 were within the
modern human range, particularly when scaled by humeral length. As we are uncertain what
digit most phalanges belong to, we cannot conclusively state whether they are long or short
with comparison to modern human populations. The lack of quantitative data on DS digit
length further complicates interpretation of this pattern. However, it is particularly notable
that LB6, a second individual from Liang Bua cave that was not diagnosed with DS, had even
shorter distal phalanges than LB1. This suggests that this is a population characteristic rather
than an abnormal condition in LB1.

The issue of small or missing paranasal sinuses remains only partially resolved. The most
commonly missing sinus in DS is the frontal sinus. A centrally positioned frontal sinus cannot
be directly evaluated due to excavator damage in the median plane of LB1, but Balzeau and
Charlier [89] found no evidence of pneumatization in the vicinity using micro-CT data. The
less damaged right supraorbital torus was previously described as containing a frontal sinus
[19, 20], but this was questioned by Balzeau and Charlier [89] using their higher resolution
dataset. Frontal sinus aplasia cannot therefore be ruled out. Maxillary sinuses are present (rul-
ing out aplasia) and do not appear especially small relative to overall facial size, also excluding
a diagnosis of Type III maxillary sinus hypoplasia (cleft-like). Establishing the presence of
Type I or II maxillary sinus hypoplasia would require evaluation of delicate internal structures
such as the uncinate process and infundibular passage, as well as soft tissue opacification, nei-
ther of which can be assessed currently [122]. There appears to be a sphenoid sinus, but its
boundaries and position relative to the sella turcica (the landmark used most commonly in the
clinical literature) are challenging to clearly identify. Taken together, evidence from the cranial
sinuses neither strongly supports nor refutes a DS diagnosis for LB1.

We provided vital contextual information about the distribution of periodontal disease and
dental caries. This context indicates that the presence of periodontal disease and lack of caries
in LB1 is not uncommon in archaic hominins or modern hunter-gatherer populations, and, in
the absence of a host of other common DS dental anomalies, is not convincing evidence of DS.
We also evaluated a number of dental features common in DS not seen in LB1, such as micro-
dontia, tooth transposition, mandibular and maxillary incisor protrusion, and Angle’s class III
malocclusion. We were unable to confirm claims that LB1 presented with taurdontism as do
some DS individuals, but could not fully evaluate this feature with available radiographs.

Failure of permanent teeth to develop is a common finding in individuals with DS, and LB1
is missing a right P4 and M

3. It remains unclear whether the P4 failed to develop or was lost
during life. More than one third molar was affected in nearly all cases of third molar agenesis
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in DS (95%) documented by Shapira et al [123] in contrast to the single tooth missing in LB1,
and Suri et al. [54] found that an average of 4.74 teeth were missing in DS patients. Moreover,
the third molar is the most common tooth absent due to agenesis in the general population,
with ~30% of some Asian populations exhibiting M3/M3 agenesis [124]. Likely instances of
third molar absence have also been documented in fossil hominins, including earlyH. erectus
[125–127]. Hypodontia affects between 2.8–11.3% of the general population, and the same
teeth are most often involved as in DS [107, 124, 128].

DS is a phenotypically variable disorder and its clinical signs are neither unique to this dis-
order nor universally expressed in all individuals with DS. Hence, it is not necessary for LB1 to
exhibit all hard tissue features that are consistent in modern individuals with DS to posit the
presence of this chromosomal disorder. Yet, the presence of only a handful of features is insuf-
ficient to confirm a differential diagnosis of DS. Of the clinical signs associated with DS, only
short distal phalanges, M3 agenesis, possibly hypodontia and possibly hypoplasia of one or
more cranial sinuses was consistent with this diagnosis. This list of features are not unique to
DS and are not among the most diagnostic (e.g., midfacial hypoplasia). This, combined with
the large number of features common to the DS phenotype that were not present in LB1, indi-
cates that it is highly unlikely that this individual had Trisomy 21 or DS. LB1 remains the type
specimen ofH. floresiensis, a species with its roots in Plio-PleistoceneHomo.

Material and Methods

CT and MRI data of DS patients
Computed tomographic (CT) and magnetic resonance imaging (MRI) data on 28 patients with
a clinical (or karyotypic) diagnosis of DS and without other abnormal morphologies were
acquired from Barnes-Jewish-Christian Hospital in St. Louis, Missouri (CT data) and from
Richard Haier’s research group at University of California, Irvine (MRI). The Washington Uni-
versity School of Medicine IRB committee approved the analysis of de-identified CT data for
this study (IRB ID #: 201410059: title "Down's syndrome and Hobbit"). The Midwestern Uni-
versity IRB committee determined that use of the MRI data did not meet the definition of
human subject’s research and did not require additional approval. The latter images were origi-
nally acquired to identify indicators in the brain for Alzheimer’s in middle-aged adults with DS
[129]. Surface renderings of the neurocranium were generated using the Mimics software pack-
age for subsequent landmark analysis. Additional details are provided in the S1 Text.

Endocranial measurements
Virtual endocasts were created for the six DS females for whom CT data were available (age
range: 10–67 years) following previously described methods [130], from which four linear mea-
surements and endocranial volume (EV) were calculated. LB1’s value was compared with the
mean value for our six subjects with DS for each measurement, and descriptive statistics were
calculated. We also tested the null hypothesis that the LB1 value was not lower than the mean
value for our 6 DS subjects (one-tailed test). Because six t tests were performed, to protect
against Type I error, statistical levels of significance were corrected by adjusting for the false
discovery rate [131]. In addition, we evaluated whether our small sample of 6 individuals with
DS (the only one for which we had linear measurements) was representative of the DS popula-
tion by means of a t-test comparing the EV of these 6 subjects to the 30 subjects with DS
reported by Aylward, Habbak [73]. Images of virtual endocasts for six euploid females from
Falk, Hildebolt [130], our six DS subjects, and LB1 were created and visually assessed. Statisti-
cal analyses were performed with JMP Pro Statistical Software Release 11.0.0 (SAS Institute,
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Inc., Cary, NC) and MedCalc Statistics for Biomedical Research Version 15.2.1.0 (MedCalc
Software, Mariakerke, Belgium).

In addition, because of the small sample size, power calculations were performed with
Power and Precision Release 4.1 (Biostat, Inc., Englewood, NJ). For all comparisons listed in
Table 2, the statistical power exceeds 99.9%. More specifically, for the largest P value (0.009 for
cerebral width), the null hypothesis was that the mean cerebral width for the DS population is
124.95 mm. With alpha (the criterion for significance) set at 0.01, a two tailed test (which
means that an effect in either direction is interpreted), and our sample size of 6 subjects with
DS, the power exceeds 99.9%. This computation assumes that the population from which the
sample was drawn has a mean of 124.95 mm with a standard deviation of 5.76 mm. The
observed value was tested against a theoretical value (constant) of 103.40 mm. Although we
used a one-tailed test in our tests for differences, we used a two-tailed test for our power calcu-
lation (which results in less statistical power) and used a conservative alpha level of 0.01, which
results in broad confidence intervals.

Neurocranial shape
We quantified shape variation of the external neurocranium using a set of 39 3D landmarks
(Table 5) acquired from dry skulls of geographically diverse adult euploid humans (n = 263)
(see [132] for more details), surface renderings (from CT andMRI data) of humans with DS
(n = 9), and LB1. Of the 9 individuals with DS, 7 were female and 2 were male. One female was
a juvenile (10 years of age) and one was a subadult (15 years of age), while the remainder of the
sample ranged from 35 to 54 years of age. Missing bilateral landmarks were estimated by mir-
roring its antimere (reflected relabeling) [133]. Landmark configurations were superimposed
via generalized Procrustes analysis to remove the effects of scale, translation and rotation coded
in the raw coordinate data [134, 135]. The x, y, and z coordinates of the 39 superimposed land-
marks were then subjected to a principal components analysis (PCA) to reduce the dimension-
ality of the data and assess the main patterns of neurocranial shape variation. Operations were
performed in SAS (SAS Institute, Inc., Cary, NC) and the PAST software package [136].

Mandibular symphysis shape
The cross-sectional shape of the mandibular symphysis was quantified using elliptical Fourier
analysis and analyzed using PCA as described in Brown and Maeda [8]. The comparative sam-
ple consisted of Australopithecus and Pleistocene Homo fossils, as well as one Paranthropus
boisei fossil (KNM-ER 729) (Table 6), euploid humans from Melanesia, Edo Japan, Australia
and Europe, six individuals with DS and the early Holocene Roonka 50 mandible discussed by
Westaway, Durband [70] (see also [8]). The symphyseal sagittal cross sections for individuals
with DS were obtained from lateral CT localizer radiographs (“scouts”) associated with the
Barnes-Jewish-Christian Hospital series discussed above. Six of the localizer radiographs were
from individuals without remodeling of alveolar bone associated with the loss of mandibular
incisor teeth (age range: 15–67 y). Five of the individuals were the same ones used in the analy-
sis of endocasts. Previous comparison of symphyseal cross-sectional shape outlines obtained
from CT scan slices, lateral radiographs, sagittally sectioned mandibles and impression mate-
rial did not indicate any significant differences in the resolution of shape and size [8]. We drew
68% confidence ellipses around each of the samples.

Stature estimates
The original stature estimates provided by Brown, Sutikna [1] were 1.04–1.09 m, with an average
of 1.06 m based on African pygmies, based on analyses using least squares regression (LS), major
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axis (MA) and reduced major axis (RMA). These equations are from Jungers [113], who calcu-
lated stature in the small-bodied australopith (A.L. 288–1, “Lucy”), and the same pygmy training
sample was used subsequently to assess competing extrapolations to short stature by Konigsberg,
Hens [112]. Stature estimation for LB1 is revisited here in several different ways. We apply the

Table 6. Fossil samples used in symphyseal cross-sectional analysis.

Australopithecus Pleistocene Homo

A.L.: 277–1, 198–1, 207–13, 288–1, 266–1, 333–6,
330–5, 400-1a, 315–22, 333w-12, 444–2, 437–1,
417-1a, 438-1g, 437–2, 620.1; MAK-VP-1/12; L.H. 44;
KNM-KP 29281; KT12/h1

OH: 13, 22; Dmanisi: 211, 2600; KNM-ER: 730,
1802; KNM-WT 15000; Sangiran: 1, 5, 6;
Zhoukoudian H-1; Ternifine (Tighinif): 1, 2, 3;
Mauer; Krapina H; Arago: 2, 13; Montmaurin; Spy
1; La Chappelle aux Saints; Amud; La Ferrassie;
Oberkassel: M, F; Predmost 3; Skhul 5;
Zhoukoudian Upper Cave 104

doi:10.1371/journal.pone.0155731.t006

Table 5. Landmarks used in this study.

Landmark Definition

Inion Point at which superior nuchal lines merge in midsagittal plane

Lambda The apex of the occipital bone at its junction with the parietals, in the midline

Bregma Posterior border of the frontal bone in the midsagittal plane

Supraorbital notch Point of greatest projection of notch into orbital space, taken on medial side of
notch

Frontomalare temporale Point where the fronto-zygomatic suture crosses the temporal line

Frontomalare orbitale Point where the fronto-zygomatic suture crosses the inner orbital rim

Mid-torus inferior Point on inferior margin of supraobrital torus roughly at the middle of the orbit (on
superior margin of orbit)

Mid-torus superior Point on superior aspect of supraorbital torus, directly above mid-torus inferior on
anterior aspect of torus

Anterior pterion Where coronal suture intersects spheno-frontal or spheno-parietal suture

Porion Uppermost point on the margin of the external auditory meatus

Auriculare Point vertically above the center of the external auditory meatus at the root of the
zygomatic process

Frontotemporale Point where the temporal line reaches its most antero-medial position on the
frontal

Asterion The common meeting point of the temporal, parietal, and occipital bones, on
either side

Opisthion Midline point at the posterior margin of the foramen magnum

Tympano-mastoid
fissure

Point on lateral border of the tympano-mastoid fissure

Medial petrotympanic
crest

Most medial point of petrotympanic crest at level of carotid canal

Lateral petrotympanic
crest

Lateral origin of petrotympanic crest; if the petrotympanic crest splits, point is
taken posteriorly

Postglenoid process Infralateral-most point posterior to glenoid fossa and anterior to ectotympanic
tube (postglenoid tuberosity or crest)

Inferior entoglenoid Most inferior point on the entoglenoid pyramid

Temporo-sphenoid
suture

Point where temporo-sphenoid suture passes from squama to cranial base (often
on infratemporal crest)

Mid-parietal Point on midsagittal suture midway between bregma and lambda (calculated from
semilandmark data)

Mid-temporal Point on the temporal squama midway between temporo-sphenoid and parietal
notch (calculated from semilandmark data)

doi:10.1371/journal.pone.0155731.t005

LB1 Did Not Have Down syndrome

PLOSONE | DOI:10.1371/journal.pone.0155731 June 8, 2016 23 / 32



classic calibration equation from a large-bodied modern human reference sample that was vali-
dated and recommended by Konigsberg et al. [112] using a femur length for LB1 of 280 mm.We
also bracket stature estimates by application of both inverse (ordinary least squares regression of
stature on femur length) and classic calibration (regression of femur length on stature, solving
for stature) using the reference sample of 19 African pygmies discussed above; we repeat this for
femur length plus tibia length (515 mm in LB1). At 216 mm, the tibia of a second adult tibia of
H. floresiensis (LB8) is almost 2 cm shorter than that of LB1; if we use the crural index of LB1
(83.9) to estimate femur length for LB8, a value of just over 257 mm is obtained. As we did for
LB1, we predict stature for LB8 from the human pygmy training sample using the sum of femur
and tibia lengths (473 mm). The stature estimates for both LB1 and LB8 are compared with pub-
lished data on stature in individuals with DS to address claims by Henneberg et al. [25] that stat-
ure in the Liang Bua fossils is expected for modern humans with this pathology.

These estimates are extrapolations because the lengths of LB1 tibia and particularly the
femur are smaller than those recorded for small-bodied human populations from the Anda-
man Islands, Africa and the Philippines. More specifically, at 280 mm, the femur of LB1 is
almost 4.7 standard deviations (sd) from the African pygmy mean (377 mm), 5.0 sd from the
Negrito mean (378 mm), and 5.7 sd from the Andamanese mean (386 mm). Konigsberg, Hens
[112] demonstrated that classic calibration works best in cases of when extrapolation is
required to predict stature; this conclusion was reached empirically via validation on a pygmy
test sample. The estimates from classic calibration are therefore our preferred estimates. No
modern human population could serve as a reasonable prior given the very small size of the
Liang Bua limb bones, including small humans from Asia, but using a small-bodied population
is preferable as it requires the least amount of extrapolation (see also [137]).

The comparative data were drawn from growth charts for Turkish individuals with DS, cho-
sen because they extended to age 18 and because they were among the shorter population for
which data were available. Nevertheless, average statures for Turkish females (1.66 m) and
males (1.76 m) were taller than local Javanese populations (1.50 m for females, 1.60 m for
males; [138]). To generate rough estimates of the stature reduction associated with DS in the
Javanese population, we applied an 11% (female) and 10% (male) decrease in height to the
average euploid male and female statures based on the difference between the Turkish euploid
and DS samples. These estimates should be viewed with caution, however, as the Turkish data
were reported as centiles rather than population averages.

Relative femoral length
We present summary data on the foot:femur ratio for LB1, as well as skeletal samples of mod-
ern humans of normal stature and short stature, from [7]. We are unaware of skeletons of
adults diagnosed with Down syndrome, but analogous anthropometric data are available for
adults with Down syndrome and for euploid controls in Smith and Ulrich [115], the raw data
of which was provided by the corresponding author (E. Smith); the ratio of their “foot” to
“thigh” lengths approximates the foot:femur index. We also present summary data in S3 Fig on
the humerofemoral index based on adult osteological specimens for LB1, African Zulus, Afri-
can pygmies, Andamanese, Asian Negritos and Khoe-San. Again, lacking skeletons of individu-
als with DS, we must turn to anthropometrics of living individuals for comparison; the ratio of
mean upper arm length to mean thigh length can be calculated from Smith and Ulrich [115]
for both individuals with DS and controls. These data permit us to evaluate claims that individ-
uals with DS converge on LB1 in relative femoral length.

However, the mean soft tissue ratios of the euploid controls were consistently higher (58.7)
than both the skeletal and fleshy foot:femur (not thigh) length ratios for normal humans in

LB1 Did Not Have Down syndrome

PLOSONE | DOI:10.1371/journal.pone.0155731 June 8, 2016 24 / 32



Jungers et al. [7], which were 53 (skeletal) and 54 (fleshy) regardless of body size. Soft tissue
thigh length is apparently not precisely the same thing as skeletal femur length. To render the
anthropometric and skeletal metrics commensurate, we therefore adjusted all soft tissue values
downward by 5.6 points so that the euploid soft tissue mean ratio and mean skeletal ratios were
equal at 0.53. A one-tailed t-test was used to evaluate the probability that the LB1 ratio was sig-
nificantly higher than the DS sample average.

Phalangeal length
Henneberg, Eckhardt [25] argued that manual phalanges, particularly the distal phalanges, of
LB1 were short relative to European standards. They also cited the short absolute foot length in
LB1 relative to modern humans as evidence of “short digits,” and therefore support for the DS
diagnosis. Short fingers (brachydactyly) and short broad hands are frequently cited as part of
the DS phenotype, but no quantitative measurements are available, and it is unclear whether
this should be assessed in absolute or relative terms. Although we could not confirm that short
toes is a clinical sign of DS, we nevertheless evaluated whether the LB1 phalanges (manual and
pedal) were absolutely and relatively shorter than those of normal- and small-statured popula-
tions of euploid modern humans. Note that LB10 was originally described as a proximal pedal
phalanx [32], but new fossils indicate that it is really a robust proximal pollical phalanx [139,
140]. Most proximal, intermediate and distal pedal and manual phalanges of LB1 and LB6 can-
not be assigned to specific rays and are therefore compared to data from multiple digits from
females of African and European ancestry in the Hamann-Todd (Cleveland Museum of Natu-
ral History) and Terry Collection (National Museum of Natural History) (n = ~98). A smaller
and less complete data set of 22 individuals of mixed sex from small-bodied human popula-
tions from Asia (Musée de l’Homme, Paris) and Africa (University of Geneva) was also uti-
lized. Summary statistics (mean, sd and range) are presented for both raw length
measurements and relative length (scaled by femoral or humeral length as appropriate). As
results are broadly comparable for the normal- and small-statured populations, only those of
the latter are presented. All phalangeal and associated long bone data were provided by Dr.
Campbell Rolian, University of Calgary.
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